Topics in sub-Riemannian geometry

نویسنده

  • A. A. Agrachev
چکیده

Sub-Riemannian geometry is the geometry of spaces with nonholonomic constraints. This paper presents an informal survey of some topics in this area, starting with the construction of geodesic curves and ending with a recent definition of curvature. Bibliography: 28 titles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-Lorentzian Geometry on Anti-de Sitter Space

Sub-Riemannian Geometry is proved to play an important role in many applications, e.g., Mathematical Physics and Control Theory. Sub-Riemannian Geometry enjoys major differences from the Riemannian being a generalization of the latter at the same time, e.g., geodesics are not unique and may be singular, the Hausdorff dimension is larger than the manifold topological dimension. There exists a la...

متن کامل

Dilatation structures in sub-riemannian geometry

Based on the notion of dilatation structure [2], we give an intrinsic treatment to sub-riemannian geometry, started in the paper [4]. Here we prove that regular sub-riemannian manifolds admit dilatation structures. From the existence of normal frames proved by Belläıche we deduce the rest of the properties of regular sub-riemannian manifolds by using the formalism of dilatation structures.

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Sub-Riemannian curvature in contact geometry

We compare different notions of curvature on contact sub-Riemannian manifolds. In particular we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi equation. The main result is that all these coefficients are encoded in the asymptotic expansion of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their expressions in terms of the standa...

متن کامل

Sub-Riemannian Geometry: Basic Ideas and Examples

This tutorial serves as an introduction to the basic ideas in sub-Riemannian geometry. The discussion emphasizes the relevance of this subject from a control theoretic point of view. Some examples of sub-Riemannian geometries such as the Heisenberg geometry and other Carnot groups have also been given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017